Kernel  |  3.10

下载     查看原文件
C++程序  |  1283行  |  33.6 KB
/* $Id: diva.c,v 1.33.2.6 2004/02/11 13:21:33 keil Exp $
 *
 * low level stuff for Eicon.Diehl Diva Family ISDN cards
 *
 * Author       Karsten Keil
 * Copyright    by Karsten Keil      <keil@isdn4linux.de>
 *
 * This software may be used and distributed according to the terms
 * of the GNU General Public License, incorporated herein by reference.
 *
 * For changes and modifications please read
 * Documentation/isdn/HiSax.cert
 *
 * Thanks to Eicon Technology for documents and information
 *
 */

#include <linux/init.h>
#include "hisax.h"
#include "isac.h"
#include "hscx.h"
#include "ipac.h"
#include "ipacx.h"
#include "isdnl1.h"
#include <linux/pci.h>
#include <linux/isapnp.h>

static const char *Diva_revision = "$Revision: 1.33.2.6 $";

#define byteout(addr, val) outb(val, addr)
#define bytein(addr) inb(addr)

#define DIVA_HSCX_DATA		0
#define DIVA_HSCX_ADR		4
#define DIVA_ISA_ISAC_DATA	2
#define DIVA_ISA_ISAC_ADR	6
#define DIVA_ISA_CTRL		7
#define DIVA_IPAC_ADR		0
#define DIVA_IPAC_DATA		1

#define DIVA_PCI_ISAC_DATA	8
#define DIVA_PCI_ISAC_ADR	0xc
#define DIVA_PCI_CTRL		0x10

/* SUB Types */
#define DIVA_ISA	1
#define DIVA_PCI	2
#define DIVA_IPAC_ISA	3
#define DIVA_IPAC_PCI	4
#define DIVA_IPACX_PCI	5

/* CTRL (Read) */
#define DIVA_IRQ_STAT	0x01
#define DIVA_EEPROM_SDA	0x02

/* CTRL (Write) */
#define DIVA_IRQ_REQ	0x01
#define DIVA_RESET	0x08
#define DIVA_EEPROM_CLK	0x40
#define DIVA_PCI_LED_A	0x10
#define DIVA_PCI_LED_B	0x20
#define DIVA_ISA_LED_A	0x20
#define DIVA_ISA_LED_B	0x40
#define DIVA_IRQ_CLR	0x80

/* Siemens PITA */
#define PITA_MISC_REG		0x1c
#ifdef __BIG_ENDIAN
#define PITA_PARA_SOFTRESET	0x00000001
#define PITA_SER_SOFTRESET	0x00000002
#define PITA_PARA_MPX_MODE	0x00000004
#define PITA_INT0_ENABLE	0x00000200
#else
#define PITA_PARA_SOFTRESET	0x01000000
#define PITA_SER_SOFTRESET	0x02000000
#define PITA_PARA_MPX_MODE	0x04000000
#define PITA_INT0_ENABLE	0x00020000
#endif
#define PITA_INT0_STATUS	0x02

static inline u_char
readreg(unsigned int ale, unsigned int adr, u_char off)
{
	register u_char ret;

	byteout(ale, off);
	ret = bytein(adr);
	return (ret);
}

static inline void
readfifo(unsigned int ale, unsigned int adr, u_char off, u_char *data, int size)
{
	byteout(ale, off);
	insb(adr, data, size);
}


static inline void
writereg(unsigned int ale, unsigned int adr, u_char off, u_char data)
{
	byteout(ale, off);
	byteout(adr, data);
}

static inline void
writefifo(unsigned int ale, unsigned int adr, u_char off, u_char *data, int size)
{
	byteout(ale, off);
	outsb(adr, data, size);
}

static inline u_char
memreadreg(unsigned long adr, u_char off)
{
	return (*((unsigned char *)
		 (((unsigned int *)adr) + off)));
}

static inline void
memwritereg(unsigned long adr, u_char off, u_char data)
{
	register u_char *p;

	p = (unsigned char *)(((unsigned int *)adr) + off);
	*p = data;
}

/* Interface functions */

static u_char
ReadISAC(struct IsdnCardState *cs, u_char offset)
{
	return (readreg(cs->hw.diva.isac_adr, cs->hw.diva.isac, offset));
}

static void
WriteISAC(struct IsdnCardState *cs, u_char offset, u_char value)
{
	writereg(cs->hw.diva.isac_adr, cs->hw.diva.isac, offset, value);
}

static void
ReadISACfifo(struct IsdnCardState *cs, u_char *data, int size)
{
	readfifo(cs->hw.diva.isac_adr, cs->hw.diva.isac, 0, data, size);
}

static void
WriteISACfifo(struct IsdnCardState *cs, u_char *data, int size)
{
	writefifo(cs->hw.diva.isac_adr, cs->hw.diva.isac, 0, data, size);
}

static u_char
ReadISAC_IPAC(struct IsdnCardState *cs, u_char offset)
{
	return (readreg(cs->hw.diva.isac_adr, cs->hw.diva.isac, offset + 0x80));
}

static void
WriteISAC_IPAC(struct IsdnCardState *cs, u_char offset, u_char value)
{
	writereg(cs->hw.diva.isac_adr, cs->hw.diva.isac, offset | 0x80, value);
}

static void
ReadISACfifo_IPAC(struct IsdnCardState *cs, u_char *data, int size)
{
	readfifo(cs->hw.diva.isac_adr, cs->hw.diva.isac, 0x80, data, size);
}

static void
WriteISACfifo_IPAC(struct IsdnCardState *cs, u_char *data, int size)
{
	writefifo(cs->hw.diva.isac_adr, cs->hw.diva.isac, 0x80, data, size);
}

static u_char
ReadHSCX(struct IsdnCardState *cs, int hscx, u_char offset)
{
	return (readreg(cs->hw.diva.hscx_adr,
		       cs->hw.diva.hscx, offset + (hscx ? 0x40 : 0)));
}

static void
WriteHSCX(struct IsdnCardState *cs, int hscx, u_char offset, u_char value)
{
	writereg(cs->hw.diva.hscx_adr,
		 cs->hw.diva.hscx, offset + (hscx ? 0x40 : 0), value);
}

static u_char
MemReadISAC_IPAC(struct IsdnCardState *cs, u_char offset)
{
	return (memreadreg(cs->hw.diva.cfg_reg, offset + 0x80));
}

static void
MemWriteISAC_IPAC(struct IsdnCardState *cs, u_char offset, u_char value)
{
	memwritereg(cs->hw.diva.cfg_reg, offset | 0x80, value);
}

static void
MemReadISACfifo_IPAC(struct IsdnCardState *cs, u_char *data, int size)
{
	while (size--)
		*data++ = memreadreg(cs->hw.diva.cfg_reg, 0x80);
}

static void
MemWriteISACfifo_IPAC(struct IsdnCardState *cs, u_char *data, int size)
{
	while (size--)
		memwritereg(cs->hw.diva.cfg_reg, 0x80, *data++);
}

static u_char
MemReadHSCX(struct IsdnCardState *cs, int hscx, u_char offset)
{
	return (memreadreg(cs->hw.diva.cfg_reg, offset + (hscx ? 0x40 : 0)));
}

static void
MemWriteHSCX(struct IsdnCardState *cs, int hscx, u_char offset, u_char value)
{
	memwritereg(cs->hw.diva.cfg_reg, offset + (hscx ? 0x40 : 0), value);
}

/* IO-Functions for IPACX type cards */
static u_char
MemReadISAC_IPACX(struct IsdnCardState *cs, u_char offset)
{
	return (memreadreg(cs->hw.diva.cfg_reg, offset));
}

static void
MemWriteISAC_IPACX(struct IsdnCardState *cs, u_char offset, u_char value)
{
	memwritereg(cs->hw.diva.cfg_reg, offset, value);
}

static void
MemReadISACfifo_IPACX(struct IsdnCardState *cs, u_char *data, int size)
{
	while (size--)
		*data++ = memreadreg(cs->hw.diva.cfg_reg, 0);
}

static void
MemWriteISACfifo_IPACX(struct IsdnCardState *cs, u_char *data, int size)
{
	while (size--)
		memwritereg(cs->hw.diva.cfg_reg, 0, *data++);
}

static u_char
MemReadHSCX_IPACX(struct IsdnCardState *cs, int hscx, u_char offset)
{
	return (memreadreg(cs->hw.diva.cfg_reg, offset +
			  (hscx ? IPACX_OFF_B2 : IPACX_OFF_B1)));
}

static void
MemWriteHSCX_IPACX(struct IsdnCardState *cs, int hscx, u_char offset, u_char value)
{
	memwritereg(cs->hw.diva.cfg_reg, offset +
		    (hscx ? IPACX_OFF_B2 : IPACX_OFF_B1), value);
}

/*
 * fast interrupt HSCX stuff goes here
 */

#define READHSCX(cs, nr, reg) readreg(cs->hw.diva.hscx_adr,		\
				      cs->hw.diva.hscx, reg + (nr ? 0x40 : 0))
#define WRITEHSCX(cs, nr, reg, data) writereg(cs->hw.diva.hscx_adr,	\
					      cs->hw.diva.hscx, reg + (nr ? 0x40 : 0), data)

#define READHSCXFIFO(cs, nr, ptr, cnt) readfifo(cs->hw.diva.hscx_adr,	\
						cs->hw.diva.hscx, (nr ? 0x40 : 0), ptr, cnt)

#define WRITEHSCXFIFO(cs, nr, ptr, cnt) writefifo(cs->hw.diva.hscx_adr, \
						  cs->hw.diva.hscx, (nr ? 0x40 : 0), ptr, cnt)

#include "hscx_irq.c"

static irqreturn_t
diva_interrupt(int intno, void *dev_id)
{
	struct IsdnCardState *cs = dev_id;
	u_char val, sval;
	u_long flags;
	int cnt = 5;

	spin_lock_irqsave(&cs->lock, flags);
	while (((sval = bytein(cs->hw.diva.ctrl)) & DIVA_IRQ_REQ) && cnt) {
		val = readreg(cs->hw.diva.hscx_adr, cs->hw.diva.hscx, HSCX_ISTA + 0x40);
		if (val)
			hscx_int_main(cs, val);
		val = readreg(cs->hw.diva.isac_adr, cs->hw.diva.isac, ISAC_ISTA);
		if (val)
			isac_interrupt(cs, val);
		cnt--;
	}
	if (!cnt)
		printk(KERN_WARNING "Diva: IRQ LOOP\n");
	writereg(cs->hw.diva.hscx_adr, cs->hw.diva.hscx, HSCX_MASK, 0xFF);
	writereg(cs->hw.diva.hscx_adr, cs->hw.diva.hscx, HSCX_MASK + 0x40, 0xFF);
	writereg(cs->hw.diva.isac_adr, cs->hw.diva.isac, ISAC_MASK, 0xFF);
	writereg(cs->hw.diva.isac_adr, cs->hw.diva.isac, ISAC_MASK, 0x0);
	writereg(cs->hw.diva.hscx_adr, cs->hw.diva.hscx, HSCX_MASK, 0x0);
	writereg(cs->hw.diva.hscx_adr, cs->hw.diva.hscx, HSCX_MASK + 0x40, 0x0);
	spin_unlock_irqrestore(&cs->lock, flags);
	return IRQ_HANDLED;
}

static irqreturn_t
diva_irq_ipac_isa(int intno, void *dev_id)
{
	struct IsdnCardState *cs = dev_id;
	u_char ista, val;
	u_long flags;
	int icnt = 5;

	spin_lock_irqsave(&cs->lock, flags);
	ista = readreg(cs->hw.diva.isac_adr, cs->hw.diva.isac, IPAC_ISTA);
Start_IPACISA:
	if (cs->debug & L1_DEB_IPAC)
		debugl1(cs, "IPAC ISTA %02X", ista);
	if (ista & 0x0f) {
		val = readreg(cs->hw.diva.isac_adr, cs->hw.diva.isac, HSCX_ISTA + 0x40);
		if (ista & 0x01)
			val |= 0x01;
		if (ista & 0x04)
			val |= 0x02;
		if (ista & 0x08)
			val |= 0x04;
		if (val)
			hscx_int_main(cs, val);
	}
	if (ista & 0x20) {
		val = 0xfe & readreg(cs->hw.diva.isac_adr, cs->hw.diva.isac, ISAC_ISTA + 0x80);
		if (val) {
			isac_interrupt(cs, val);
		}
	}
	if (ista & 0x10) {
		val = 0x01;
		isac_interrupt(cs, val);
	}
	ista  = readreg(cs->hw.diva.isac_adr, cs->hw.diva.isac, IPAC_ISTA);
	if ((ista & 0x3f) && icnt) {
		icnt--;
		goto Start_IPACISA;
	}
	if (!icnt)
		printk(KERN_WARNING "DIVA IPAC IRQ LOOP\n");
	writereg(cs->hw.diva.isac_adr, cs->hw.diva.isac, IPAC_MASK, 0xFF);
	writereg(cs->hw.diva.isac_adr, cs->hw.diva.isac, IPAC_MASK, 0xC0);
	spin_unlock_irqrestore(&cs->lock, flags);
	return IRQ_HANDLED;
}

static inline void
MemwaitforCEC(struct IsdnCardState *cs, int hscx)
{
	int to = 50;

	while ((MemReadHSCX(cs, hscx, HSCX_STAR) & 0x04) && to) {
		udelay(1);
		to--;
	}
	if (!to)
		printk(KERN_WARNING "HiSax: waitforCEC timeout\n");
}


static inline void
MemwaitforXFW(struct IsdnCardState *cs, int hscx)
{
	int to = 50;

	while (((MemReadHSCX(cs, hscx, HSCX_STAR) & 0x44) != 0x40) && to) {
		udelay(1);
		to--;
	}
	if (!to)
		printk(KERN_WARNING "HiSax: waitforXFW timeout\n");
}

static inline void
MemWriteHSCXCMDR(struct IsdnCardState *cs, int hscx, u_char data)
{
	MemwaitforCEC(cs, hscx);
	MemWriteHSCX(cs, hscx, HSCX_CMDR, data);
}

static void
Memhscx_empty_fifo(struct BCState *bcs, int count)
{
	u_char *ptr;
	struct IsdnCardState *cs = bcs->cs;
	int cnt;

	if ((cs->debug & L1_DEB_HSCX) && !(cs->debug & L1_DEB_HSCX_FIFO))
		debugl1(cs, "hscx_empty_fifo");

	if (bcs->hw.hscx.rcvidx + count > HSCX_BUFMAX) {
		if (cs->debug & L1_DEB_WARN)
			debugl1(cs, "hscx_empty_fifo: incoming packet too large");
		MemWriteHSCXCMDR(cs, bcs->hw.hscx.hscx, 0x80);
		bcs->hw.hscx.rcvidx = 0;
		return;
	}
	ptr = bcs->hw.hscx.rcvbuf + bcs->hw.hscx.rcvidx;
	cnt = count;
	while (cnt--)
		*ptr++ = memreadreg(cs->hw.diva.cfg_reg, bcs->hw.hscx.hscx ? 0x40 : 0);
	MemWriteHSCXCMDR(cs, bcs->hw.hscx.hscx, 0x80);
	ptr = bcs->hw.hscx.rcvbuf + bcs->hw.hscx.rcvidx;
	bcs->hw.hscx.rcvidx += count;
	if (cs->debug & L1_DEB_HSCX_FIFO) {
		char *t = bcs->blog;

		t += sprintf(t, "hscx_empty_fifo %c cnt %d",
			     bcs->hw.hscx.hscx ? 'B' : 'A', count);
		QuickHex(t, ptr, count);
		debugl1(cs, bcs->blog);
	}
}

static void
Memhscx_fill_fifo(struct BCState *bcs)
{
	struct IsdnCardState *cs = bcs->cs;
	int more, count, cnt;
	int fifo_size = test_bit(HW_IPAC, &cs->HW_Flags) ? 64 : 32;
	u_char *ptr, *p;

	if ((cs->debug & L1_DEB_HSCX) && !(cs->debug & L1_DEB_HSCX_FIFO))
		debugl1(cs, "hscx_fill_fifo");

	if (!bcs->tx_skb)
		return;
	if (bcs->tx_skb->len <= 0)
		return;

	more = (bcs->mode == L1_MODE_TRANS) ? 1 : 0;
	if (bcs->tx_skb->len > fifo_size) {
		more = !0;
		count = fifo_size;
	} else
		count = bcs->tx_skb->len;
	cnt = count;
	MemwaitforXFW(cs, bcs->hw.hscx.hscx);
	p = ptr = bcs->tx_skb->data;
	skb_pull(bcs->tx_skb, count);
	bcs->tx_cnt -= count;
	bcs->hw.hscx.count += count;
	while (cnt--)
		memwritereg(cs->hw.diva.cfg_reg, bcs->hw.hscx.hscx ? 0x40 : 0,
			    *p++);
	MemWriteHSCXCMDR(cs, bcs->hw.hscx.hscx, more ? 0x8 : 0xa);
	if (cs->debug & L1_DEB_HSCX_FIFO) {
		char *t = bcs->blog;

		t += sprintf(t, "hscx_fill_fifo %c cnt %d",
			     bcs->hw.hscx.hscx ? 'B' : 'A', count);
		QuickHex(t, ptr, count);
		debugl1(cs, bcs->blog);
	}
}

static void
Memhscx_interrupt(struct IsdnCardState *cs, u_char val, u_char hscx)
{
	u_char r;
	struct BCState *bcs = cs->bcs + hscx;
	struct sk_buff *skb;
	int fifo_size = test_bit(HW_IPAC, &cs->HW_Flags) ? 64 : 32;
	int count;

	if (!test_bit(BC_FLG_INIT, &bcs->Flag))
		return;

	if (val & 0x80) {	/* RME */
		r = MemReadHSCX(cs, hscx, HSCX_RSTA);
		if ((r & 0xf0) != 0xa0) {
			if (!(r & 0x80))
				if (cs->debug & L1_DEB_WARN)
					debugl1(cs, "HSCX invalid frame");
			if ((r & 0x40) && bcs->mode)
				if (cs->debug & L1_DEB_WARN)
					debugl1(cs, "HSCX RDO mode=%d",
						bcs->mode);
			if (!(r & 0x20))
				if (cs->debug & L1_DEB_WARN)
					debugl1(cs, "HSCX CRC error");
			MemWriteHSCXCMDR(cs, hscx, 0x80);
		} else {
			count = MemReadHSCX(cs, hscx, HSCX_RBCL) & (
				test_bit(HW_IPAC, &cs->HW_Flags) ? 0x3f : 0x1f);
			if (count == 0)
				count = fifo_size;
			Memhscx_empty_fifo(bcs, count);
			if ((count = bcs->hw.hscx.rcvidx - 1) > 0) {
				if (cs->debug & L1_DEB_HSCX_FIFO)
					debugl1(cs, "HX Frame %d", count);
				if (!(skb = dev_alloc_skb(count)))
					printk(KERN_WARNING "HSCX: receive out of memory\n");
				else {
					memcpy(skb_put(skb, count), bcs->hw.hscx.rcvbuf, count);
					skb_queue_tail(&bcs->rqueue, skb);
				}
			}
		}
		bcs->hw.hscx.rcvidx = 0;
		schedule_event(bcs, B_RCVBUFREADY);
	}
	if (val & 0x40) {	/* RPF */
		Memhscx_empty_fifo(bcs, fifo_size);
		if (bcs->mode == L1_MODE_TRANS) {
			/* receive audio data */
			if (!(skb = dev_alloc_skb(fifo_size)))
				printk(KERN_WARNING "HiSax: receive out of memory\n");
			else {
				memcpy(skb_put(skb, fifo_size), bcs->hw.hscx.rcvbuf, fifo_size);
				skb_queue_tail(&bcs->rqueue, skb);
			}
			bcs->hw.hscx.rcvidx = 0;
			schedule_event(bcs, B_RCVBUFREADY);
		}
	}
	if (val & 0x10) {	/* XPR */
		if (bcs->tx_skb) {
			if (bcs->tx_skb->len) {
				Memhscx_fill_fifo(bcs);
				return;
			} else {
				if (test_bit(FLG_LLI_L1WAKEUP, &bcs->st->lli.flag) &&
				    (PACKET_NOACK != bcs->tx_skb->pkt_type)) {
					u_long	flags;
					spin_lock_irqsave(&bcs->aclock, flags);
					bcs->ackcnt += bcs->hw.hscx.count;
					spin_unlock_irqrestore(&bcs->aclock, flags);
					schedule_event(bcs, B_ACKPENDING);
				}
				dev_kfree_skb_irq(bcs->tx_skb);
				bcs->hw.hscx.count = 0;
				bcs->tx_skb = NULL;
			}
		}
		if ((bcs->tx_skb = skb_dequeue(&bcs->squeue))) {
			bcs->hw.hscx.count = 0;
			test_and_set_bit(BC_FLG_BUSY, &bcs->Flag);
			Memhscx_fill_fifo(bcs);
		} else {
			test_and_clear_bit(BC_FLG_BUSY, &bcs->Flag);
			schedule_event(bcs, B_XMTBUFREADY);
		}
	}
}

static inline void
Memhscx_int_main(struct IsdnCardState *cs, u_char val)
{

	u_char exval;
	struct BCState *bcs;

	if (val & 0x01) { // EXB
		bcs = cs->bcs + 1;
		exval = MemReadHSCX(cs, 1, HSCX_EXIR);
		if (exval & 0x40) {
			if (bcs->mode == 1)
				Memhscx_fill_fifo(bcs);
			else {
				/* Here we lost an TX interrupt, so
				 * restart transmitting the whole frame.
				 */
				if (bcs->tx_skb) {
					skb_push(bcs->tx_skb, bcs->hw.hscx.count);
					bcs->tx_cnt += bcs->hw.hscx.count;
					bcs->hw.hscx.count = 0;
				}
				MemWriteHSCXCMDR(cs, bcs->hw.hscx.hscx, 0x01);
				if (cs->debug & L1_DEB_WARN)
					debugl1(cs, "HSCX B EXIR %x Lost TX", exval);
			}
		} else if (cs->debug & L1_DEB_HSCX)
			debugl1(cs, "HSCX B EXIR %x", exval);
	}
	if (val & 0xf8) {
		if (cs->debug & L1_DEB_HSCX)
			debugl1(cs, "HSCX B interrupt %x", val);
		Memhscx_interrupt(cs, val, 1);
	}
	if (val & 0x02) {	// EXA
		bcs = cs->bcs;
		exval = MemReadHSCX(cs, 0, HSCX_EXIR);
		if (exval & 0x40) {
			if (bcs->mode == L1_MODE_TRANS)
				Memhscx_fill_fifo(bcs);
			else {
				/* Here we lost an TX interrupt, so
				 * restart transmitting the whole frame.
				 */
				if (bcs->tx_skb) {
					skb_push(bcs->tx_skb, bcs->hw.hscx.count);
					bcs->tx_cnt += bcs->hw.hscx.count;
					bcs->hw.hscx.count = 0;
				}
				MemWriteHSCXCMDR(cs, bcs->hw.hscx.hscx, 0x01);
				if (cs->debug & L1_DEB_WARN)
					debugl1(cs, "HSCX A EXIR %x Lost TX", exval);
			}
		} else if (cs->debug & L1_DEB_HSCX)
			debugl1(cs, "HSCX A EXIR %x", exval);
	}
	if (val & 0x04) {	// ICA
		exval = MemReadHSCX(cs, 0, HSCX_ISTA);
		if (cs->debug & L1_DEB_HSCX)
			debugl1(cs, "HSCX A interrupt %x", exval);
		Memhscx_interrupt(cs, exval, 0);
	}
}

static irqreturn_t
diva_irq_ipac_pci(int intno, void *dev_id)
{
	struct IsdnCardState *cs = dev_id;
	u_char ista, val;
	int icnt = 5;
	u_char *cfg;
	u_long flags;

	spin_lock_irqsave(&cs->lock, flags);
	cfg = (u_char *) cs->hw.diva.pci_cfg;
	val = *cfg;
	if (!(val & PITA_INT0_STATUS)) {
		spin_unlock_irqrestore(&cs->lock, flags);
		return IRQ_NONE; /* other shared IRQ */
	}
	*cfg = PITA_INT0_STATUS; /* Reset pending INT0 */
	ista = memreadreg(cs->hw.diva.cfg_reg, IPAC_ISTA);
Start_IPACPCI:
	if (cs->debug & L1_DEB_IPAC)
		debugl1(cs, "IPAC ISTA %02X", ista);
	if (ista & 0x0f) {
		val = memreadreg(cs->hw.diva.cfg_reg, HSCX_ISTA + 0x40);
		if (ista & 0x01)
			val |= 0x01;
		if (ista & 0x04)
			val |= 0x02;
		if (ista & 0x08)
			val |= 0x04;
		if (val)
			Memhscx_int_main(cs, val);
	}
	if (ista & 0x20) {
		val = 0xfe & memreadreg(cs->hw.diva.cfg_reg, ISAC_ISTA + 0x80);
		if (val) {
			isac_interrupt(cs, val);
		}
	}
	if (ista & 0x10) {
		val = 0x01;
		isac_interrupt(cs, val);
	}
	ista  = memreadreg(cs->hw.diva.cfg_reg, IPAC_ISTA);
	if ((ista & 0x3f) && icnt) {
		icnt--;
		goto Start_IPACPCI;
	}
	if (!icnt)
		printk(KERN_WARNING "DIVA IPAC PCI IRQ LOOP\n");
	memwritereg(cs->hw.diva.cfg_reg, IPAC_MASK, 0xFF);
	memwritereg(cs->hw.diva.cfg_reg, IPAC_MASK, 0xC0);
	spin_unlock_irqrestore(&cs->lock, flags);
	return IRQ_HANDLED;
}

static irqreturn_t
diva_irq_ipacx_pci(int intno, void *dev_id)
{
	struct IsdnCardState *cs = dev_id;
	u_char val;
	u_char *cfg;
	u_long flags;

	spin_lock_irqsave(&cs->lock, flags);
	cfg = (u_char *) cs->hw.diva.pci_cfg;
	val = *cfg;
	if (!(val & PITA_INT0_STATUS)) {
		spin_unlock_irqrestore(&cs->lock, flags);
		return IRQ_NONE; // other shared IRQ
	}
	interrupt_ipacx(cs);      // handler for chip
	*cfg = PITA_INT0_STATUS;  // Reset PLX interrupt
	spin_unlock_irqrestore(&cs->lock, flags);
	return IRQ_HANDLED;
}

static void
release_io_diva(struct IsdnCardState *cs)
{
	int bytecnt;

	if ((cs->subtyp == DIVA_IPAC_PCI) ||
	    (cs->subtyp == DIVA_IPACX_PCI)) {
		u_int *cfg = (unsigned int *)cs->hw.diva.pci_cfg;

		*cfg = 0; /* disable INT0/1 */
		*cfg = 2; /* reset pending INT0 */
		if (cs->hw.diva.cfg_reg)
			iounmap((void *)cs->hw.diva.cfg_reg);
		if (cs->hw.diva.pci_cfg)
			iounmap((void *)cs->hw.diva.pci_cfg);
		return;
	} else if (cs->subtyp != DIVA_IPAC_ISA) {
		del_timer(&cs->hw.diva.tl);
		if (cs->hw.diva.cfg_reg)
			byteout(cs->hw.diva.ctrl, 0); /* LED off, Reset */
	}
	if ((cs->subtyp == DIVA_ISA) || (cs->subtyp == DIVA_IPAC_ISA))
		bytecnt = 8;
	else
		bytecnt = 32;
	if (cs->hw.diva.cfg_reg) {
		release_region(cs->hw.diva.cfg_reg, bytecnt);
	}
}

static void
iounmap_diva(struct IsdnCardState *cs)
{
	if ((cs->subtyp == DIVA_IPAC_PCI) || (cs->subtyp == DIVA_IPACX_PCI)) {
		if (cs->hw.diva.cfg_reg) {
			iounmap((void *)cs->hw.diva.cfg_reg);
			cs->hw.diva.cfg_reg = 0;
		}
		if (cs->hw.diva.pci_cfg) {
			iounmap((void *)cs->hw.diva.pci_cfg);
			cs->hw.diva.pci_cfg = 0;
		}
	}

	return;
}

static void
reset_diva(struct IsdnCardState *cs)
{
	if (cs->subtyp == DIVA_IPAC_ISA) {
		writereg(cs->hw.diva.isac_adr, cs->hw.diva.isac, IPAC_POTA2, 0x20);
		mdelay(10);
		writereg(cs->hw.diva.isac_adr, cs->hw.diva.isac, IPAC_POTA2, 0x00);
		mdelay(10);
		writereg(cs->hw.diva.isac_adr, cs->hw.diva.isac, IPAC_MASK, 0xc0);
	} else if (cs->subtyp == DIVA_IPAC_PCI) {
		unsigned int *ireg = (unsigned int *)(cs->hw.diva.pci_cfg +
						      PITA_MISC_REG);
		*ireg = PITA_PARA_SOFTRESET | PITA_PARA_MPX_MODE;
		mdelay(10);
		*ireg = PITA_PARA_MPX_MODE;
		mdelay(10);
		memwritereg(cs->hw.diva.cfg_reg, IPAC_MASK, 0xc0);
	} else if (cs->subtyp == DIVA_IPACX_PCI) {
		unsigned int *ireg = (unsigned int *)(cs->hw.diva.pci_cfg +
						      PITA_MISC_REG);
		*ireg = PITA_PARA_SOFTRESET | PITA_PARA_MPX_MODE;
		mdelay(10);
		*ireg = PITA_PARA_MPX_MODE | PITA_SER_SOFTRESET;
		mdelay(10);
		MemWriteISAC_IPACX(cs, IPACX_MASK, 0xff); // Interrupts off
	} else { /* DIVA 2.0 */
		cs->hw.diva.ctrl_reg = 0;        /* Reset On */
		byteout(cs->hw.diva.ctrl, cs->hw.diva.ctrl_reg);
		mdelay(10);
		cs->hw.diva.ctrl_reg |= DIVA_RESET;  /* Reset Off */
		byteout(cs->hw.diva.ctrl, cs->hw.diva.ctrl_reg);
		mdelay(10);
		if (cs->subtyp == DIVA_ISA)
			cs->hw.diva.ctrl_reg |= DIVA_ISA_LED_A;
		else {
			/* Workaround PCI9060 */
			byteout(cs->hw.diva.pci_cfg + 0x69, 9);
			cs->hw.diva.ctrl_reg |= DIVA_PCI_LED_A;
		}
		byteout(cs->hw.diva.ctrl, cs->hw.diva.ctrl_reg);
	}
}

#define DIVA_ASSIGN 1

static void
diva_led_handler(struct IsdnCardState *cs)
{
	int blink = 0;

	if ((cs->subtyp == DIVA_IPAC_ISA) ||
	    (cs->subtyp == DIVA_IPAC_PCI) ||
	    (cs->subtyp == DIVA_IPACX_PCI))
		return;
	del_timer(&cs->hw.diva.tl);
	if (cs->hw.diva.status & DIVA_ASSIGN)
		cs->hw.diva.ctrl_reg |= (DIVA_ISA == cs->subtyp) ?
			DIVA_ISA_LED_A : DIVA_PCI_LED_A;
	else {
		cs->hw.diva.ctrl_reg ^= (DIVA_ISA == cs->subtyp) ?
			DIVA_ISA_LED_A : DIVA_PCI_LED_A;
		blink = 250;
	}
	if (cs->hw.diva.status & 0xf000)
		cs->hw.diva.ctrl_reg |= (DIVA_ISA == cs->subtyp) ?
			DIVA_ISA_LED_B : DIVA_PCI_LED_B;
	else if (cs->hw.diva.status & 0x0f00) {
		cs->hw.diva.ctrl_reg ^= (DIVA_ISA == cs->subtyp) ?
			DIVA_ISA_LED_B : DIVA_PCI_LED_B;
		blink = 500;
	} else
		cs->hw.diva.ctrl_reg &= ~((DIVA_ISA == cs->subtyp) ?
					  DIVA_ISA_LED_B : DIVA_PCI_LED_B);

	byteout(cs->hw.diva.ctrl, cs->hw.diva.ctrl_reg);
	if (blink) {
		init_timer(&cs->hw.diva.tl);
		cs->hw.diva.tl.expires = jiffies + ((blink * HZ) / 1000);
		add_timer(&cs->hw.diva.tl);
	}
}

static int
Diva_card_msg(struct IsdnCardState *cs, int mt, void *arg)
{
	u_int *ireg;
	u_long flags;

	switch (mt) {
	case CARD_RESET:
		spin_lock_irqsave(&cs->lock, flags);
		reset_diva(cs);
		spin_unlock_irqrestore(&cs->lock, flags);
		return (0);
	case CARD_RELEASE:
		release_io_diva(cs);
		return (0);
	case CARD_INIT:
		spin_lock_irqsave(&cs->lock, flags);
		reset_diva(cs);
		if (cs->subtyp == DIVA_IPACX_PCI) {
			ireg = (unsigned int *)cs->hw.diva.pci_cfg;
			*ireg = PITA_INT0_ENABLE;
			init_ipacx(cs, 3); // init chip and enable interrupts
			spin_unlock_irqrestore(&cs->lock, flags);
			return (0);
		}
		if (cs->subtyp == DIVA_IPAC_PCI) {
			ireg = (unsigned int *)cs->hw.diva.pci_cfg;
			*ireg = PITA_INT0_ENABLE;
		}
		inithscxisac(cs, 3);
		spin_unlock_irqrestore(&cs->lock, flags);
		return (0);
	case CARD_TEST:
		return (0);
	case (MDL_REMOVE | REQUEST):
		cs->hw.diva.status = 0;
		break;
	case (MDL_ASSIGN | REQUEST):
		cs->hw.diva.status |= DIVA_ASSIGN;
		break;
	case MDL_INFO_SETUP:
		if ((long)arg)
			cs->hw.diva.status |=  0x0200;
		else
			cs->hw.diva.status |=  0x0100;
		break;
	case MDL_INFO_CONN:
		if ((long)arg)
			cs->hw.diva.status |=  0x2000;
		else
			cs->hw.diva.status |=  0x1000;
		break;
	case MDL_INFO_REL:
		if ((long)arg) {
			cs->hw.diva.status &=  ~0x2000;
			cs->hw.diva.status &=  ~0x0200;
		} else {
			cs->hw.diva.status &=  ~0x1000;
			cs->hw.diva.status &=  ~0x0100;
		}
		break;
	}
	if ((cs->subtyp != DIVA_IPAC_ISA) &&
	    (cs->subtyp != DIVA_IPAC_PCI) &&
	    (cs->subtyp != DIVA_IPACX_PCI)) {
		spin_lock_irqsave(&cs->lock, flags);
		diva_led_handler(cs);
		spin_unlock_irqrestore(&cs->lock, flags);
	}
	return (0);
}

static int setup_diva_common(struct IsdnCardState *cs)
{
	int bytecnt;
	u_char val;

	if ((cs->subtyp == DIVA_ISA) || (cs->subtyp == DIVA_IPAC_ISA))
		bytecnt = 8;
	else
		bytecnt = 32;

	printk(KERN_INFO
	       "Diva: %s card configured at %#lx IRQ %d\n",
	       (cs->subtyp == DIVA_PCI) ? "PCI" :
	       (cs->subtyp == DIVA_ISA) ? "ISA" :
	       (cs->subtyp == DIVA_IPAC_ISA) ? "IPAC ISA" :
	       (cs->subtyp == DIVA_IPAC_PCI) ? "IPAC PCI" : "IPACX PCI",
	       cs->hw.diva.cfg_reg, cs->irq);
	if ((cs->subtyp == DIVA_IPAC_PCI)  ||
	    (cs->subtyp == DIVA_IPACX_PCI) ||
	    (cs->subtyp == DIVA_PCI))
		printk(KERN_INFO "Diva: %s space at %#lx\n",
		       (cs->subtyp == DIVA_PCI) ? "PCI" :
		       (cs->subtyp == DIVA_IPAC_PCI) ? "IPAC PCI" : "IPACX PCI",
		       cs->hw.diva.pci_cfg);
	if ((cs->subtyp != DIVA_IPAC_PCI) &&
	    (cs->subtyp != DIVA_IPACX_PCI)) {
		if (!request_region(cs->hw.diva.cfg_reg, bytecnt, "diva isdn")) {
			printk(KERN_WARNING
			       "HiSax: %s config port %lx-%lx already in use\n",
			       "diva",
			       cs->hw.diva.cfg_reg,
			       cs->hw.diva.cfg_reg + bytecnt);
			iounmap_diva(cs);
			return (0);
		}
	}
	cs->BC_Read_Reg  = &ReadHSCX;
	cs->BC_Write_Reg = &WriteHSCX;
	cs->BC_Send_Data = &hscx_fill_fifo;
	cs->cardmsg = &Diva_card_msg;
	setup_isac(cs);
	if (cs->subtyp == DIVA_IPAC_ISA) {
		cs->readisac  = &ReadISAC_IPAC;
		cs->writeisac = &WriteISAC_IPAC;
		cs->readisacfifo  = &ReadISACfifo_IPAC;
		cs->writeisacfifo = &WriteISACfifo_IPAC;
		cs->irq_func = &diva_irq_ipac_isa;
		val = readreg(cs->hw.diva.isac_adr, cs->hw.diva.isac, IPAC_ID);
		printk(KERN_INFO "Diva: IPAC version %x\n", val);
	} else if (cs->subtyp == DIVA_IPAC_PCI) {
		cs->readisac  = &MemReadISAC_IPAC;
		cs->writeisac = &MemWriteISAC_IPAC;
		cs->readisacfifo  = &MemReadISACfifo_IPAC;
		cs->writeisacfifo = &MemWriteISACfifo_IPAC;
		cs->BC_Read_Reg  = &MemReadHSCX;
		cs->BC_Write_Reg = &MemWriteHSCX;
		cs->BC_Send_Data = &Memhscx_fill_fifo;
		cs->irq_func = &diva_irq_ipac_pci;
		val = memreadreg(cs->hw.diva.cfg_reg, IPAC_ID);
		printk(KERN_INFO "Diva: IPAC version %x\n", val);
	} else if (cs->subtyp == DIVA_IPACX_PCI) {
		cs->readisac  = &MemReadISAC_IPACX;
		cs->writeisac = &MemWriteISAC_IPACX;
		cs->readisacfifo  = &MemReadISACfifo_IPACX;
		cs->writeisacfifo = &MemWriteISACfifo_IPACX;
		cs->BC_Read_Reg  = &MemReadHSCX_IPACX;
		cs->BC_Write_Reg = &MemWriteHSCX_IPACX;
		cs->BC_Send_Data = NULL; // function located in ipacx module
		cs->irq_func = &diva_irq_ipacx_pci;
		printk(KERN_INFO "Diva: IPACX Design Id: %x\n",
		       MemReadISAC_IPACX(cs, IPACX_ID) & 0x3F);
	} else { /* DIVA 2.0 */
		cs->hw.diva.tl.function = (void *) diva_led_handler;
		cs->hw.diva.tl.data = (long) cs;
		init_timer(&cs->hw.diva.tl);
		cs->readisac  = &ReadISAC;
		cs->writeisac = &WriteISAC;
		cs->readisacfifo  = &ReadISACfifo;
		cs->writeisacfifo = &WriteISACfifo;
		cs->irq_func = &diva_interrupt;
		ISACVersion(cs, "Diva:");
		if (HscxVersion(cs, "Diva:")) {
			printk(KERN_WARNING
			       "Diva: wrong HSCX versions check IO address\n");
			release_io_diva(cs);
			return (0);
		}
	}
	return (1);
}

#ifdef CONFIG_ISA

static int setup_diva_isa(struct IsdnCard *card)
{
	struct IsdnCardState *cs = card->cs;
	u_char val;

	if (!card->para[1])
		return (-1);	/* card not found; continue search */

	cs->hw.diva.ctrl_reg = 0;
	cs->hw.diva.cfg_reg = card->para[1];
	val = readreg(cs->hw.diva.cfg_reg + DIVA_IPAC_ADR,
		      cs->hw.diva.cfg_reg + DIVA_IPAC_DATA, IPAC_ID);
	printk(KERN_INFO "Diva: IPAC version %x\n", val);
	if ((val == 1) || (val == 2)) {
		cs->subtyp = DIVA_IPAC_ISA;
		cs->hw.diva.ctrl = 0;
		cs->hw.diva.isac = card->para[1] + DIVA_IPAC_DATA;
		cs->hw.diva.hscx = card->para[1] + DIVA_IPAC_DATA;
		cs->hw.diva.isac_adr = card->para[1] + DIVA_IPAC_ADR;
		cs->hw.diva.hscx_adr = card->para[1] + DIVA_IPAC_ADR;
		test_and_set_bit(HW_IPAC, &cs->HW_Flags);
	} else {
		cs->subtyp = DIVA_ISA;
		cs->hw.diva.ctrl = card->para[1] + DIVA_ISA_CTRL;
		cs->hw.diva.isac = card->para[1] + DIVA_ISA_ISAC_DATA;
		cs->hw.diva.hscx = card->para[1] + DIVA_HSCX_DATA;
		cs->hw.diva.isac_adr = card->para[1] + DIVA_ISA_ISAC_ADR;
		cs->hw.diva.hscx_adr = card->para[1] + DIVA_HSCX_ADR;
	}
	cs->irq = card->para[0];

	return (1);		/* card found */
}

#else	/* if !CONFIG_ISA */

static int setup_diva_isa(struct IsdnCard *card)
{
	return (-1);	/* card not found; continue search */
}

#endif	/* CONFIG_ISA */

#ifdef __ISAPNP__
static struct isapnp_device_id diva_ids[] = {
	{ ISAPNP_VENDOR('G', 'D', 'I'), ISAPNP_FUNCTION(0x51),
	  ISAPNP_VENDOR('G', 'D', 'I'), ISAPNP_FUNCTION(0x51),
	  (unsigned long) "Diva picola" },
	{ ISAPNP_VENDOR('G', 'D', 'I'), ISAPNP_FUNCTION(0x51),
	  ISAPNP_VENDOR('E', 'I', 'C'), ISAPNP_FUNCTION(0x51),
	  (unsigned long) "Diva picola" },
	{ ISAPNP_VENDOR('G', 'D', 'I'), ISAPNP_FUNCTION(0x71),
	  ISAPNP_VENDOR('G', 'D', 'I'), ISAPNP_FUNCTION(0x71),
	  (unsigned long) "Diva 2.0" },
	{ ISAPNP_VENDOR('G', 'D', 'I'), ISAPNP_FUNCTION(0x71),
	  ISAPNP_VENDOR('E', 'I', 'C'), ISAPNP_FUNCTION(0x71),
	  (unsigned long) "Diva 2.0" },
	{ ISAPNP_VENDOR('G', 'D', 'I'), ISAPNP_FUNCTION(0xA1),
	  ISAPNP_VENDOR('G', 'D', 'I'), ISAPNP_FUNCTION(0xA1),
	  (unsigned long) "Diva 2.01" },
	{ ISAPNP_VENDOR('G', 'D', 'I'), ISAPNP_FUNCTION(0xA1),
	  ISAPNP_VENDOR('E', 'I', 'C'), ISAPNP_FUNCTION(0xA1),
	  (unsigned long) "Diva 2.01" },
	{ 0, }
};

static struct isapnp_device_id *ipid = &diva_ids[0];
static struct pnp_card *pnp_c = NULL;

static int setup_diva_isapnp(struct IsdnCard *card)
{
	struct IsdnCardState *cs = card->cs;
	struct pnp_dev *pnp_d;

	if (!isapnp_present())
		return (-1);	/* card not found; continue search */

	while (ipid->card_vendor) {
		if ((pnp_c = pnp_find_card(ipid->card_vendor,
					   ipid->card_device, pnp_c))) {
			pnp_d = NULL;
			if ((pnp_d = pnp_find_dev(pnp_c,
						  ipid->vendor, ipid->function, pnp_d))) {
				int err;

				printk(KERN_INFO "HiSax: %s detected\n",
				       (char *)ipid->driver_data);
				pnp_disable_dev(pnp_d);
				err = pnp_activate_dev(pnp_d);
				if (err < 0) {
					printk(KERN_WARNING "%s: pnp_activate_dev ret(%d)\n",
					       __func__, err);
					return (0);
				}
				card->para[1] = pnp_port_start(pnp_d, 0);
				card->para[0] = pnp_irq(pnp_d, 0);
				if (!card->para[0] || !card->para[1]) {
					printk(KERN_ERR "Diva PnP:some resources are missing %ld/%lx\n",
					       card->para[0], card->para[1]);
					pnp_disable_dev(pnp_d);
					return (0);
				}
				cs->hw.diva.cfg_reg  = card->para[1];
				cs->irq = card->para[0];
				if (ipid->function == ISAPNP_FUNCTION(0xA1)) {
					cs->subtyp = DIVA_IPAC_ISA;
					cs->hw.diva.ctrl = 0;
					cs->hw.diva.isac =
						card->para[1] + DIVA_IPAC_DATA;
					cs->hw.diva.hscx =
						card->para[1] + DIVA_IPAC_DATA;
					cs->hw.diva.isac_adr =
						card->para[1] + DIVA_IPAC_ADR;
					cs->hw.diva.hscx_adr =
						card->para[1] + DIVA_IPAC_ADR;
					test_and_set_bit(HW_IPAC, &cs->HW_Flags);
				} else {
					cs->subtyp = DIVA_ISA;
					cs->hw.diva.ctrl =
						card->para[1] + DIVA_ISA_CTRL;
					cs->hw.diva.isac =
						card->para[1] + DIVA_ISA_ISAC_DATA;
					cs->hw.diva.hscx =
						card->para[1] + DIVA_HSCX_DATA;
					cs->hw.diva.isac_adr =
						card->para[1] + DIVA_ISA_ISAC_ADR;
					cs->hw.diva.hscx_adr =
						card->para[1] + DIVA_HSCX_ADR;
				}
				return (1);		/* card found */
			} else {
				printk(KERN_ERR "Diva PnP: PnP error card found, no device\n");
				return (0);
			}
		}
		ipid++;
		pnp_c = NULL;
	}

	return (-1);	/* card not found; continue search */
}

#else	/* if !ISAPNP */

static int setup_diva_isapnp(struct IsdnCard *card)
{
	return (-1);	/* card not found; continue search */
}

#endif	/* ISAPNP */

#ifdef CONFIG_PCI
static struct pci_dev *dev_diva = NULL;
static struct pci_dev *dev_diva_u = NULL;
static struct pci_dev *dev_diva201 = NULL;
static struct pci_dev *dev_diva202 = NULL;

static int setup_diva_pci(struct IsdnCard *card)
{
	struct IsdnCardState *cs = card->cs;

	cs->subtyp = 0;
	if ((dev_diva = hisax_find_pci_device(PCI_VENDOR_ID_EICON,
					      PCI_DEVICE_ID_EICON_DIVA20, dev_diva))) {
		if (pci_enable_device(dev_diva))
			return (0);
		cs->subtyp = DIVA_PCI;
		cs->irq = dev_diva->irq;
		cs->hw.diva.cfg_reg = pci_resource_start(dev_diva, 2);
	} else if ((dev_diva_u = hisax_find_pci_device(PCI_VENDOR_ID_EICON,
						       PCI_DEVICE_ID_EICON_DIVA20_U, dev_diva_u))) {
		if (pci_enable_device(dev_diva_u))
			return (0);
		cs->subtyp = DIVA_PCI;
		cs->irq = dev_diva_u->irq;
		cs->hw.diva.cfg_reg = pci_resource_start(dev_diva_u, 2);
	} else if ((dev_diva201 = hisax_find_pci_device(PCI_VENDOR_ID_EICON,
							PCI_DEVICE_ID_EICON_DIVA201, dev_diva201))) {
		if (pci_enable_device(dev_diva201))
			return (0);
		cs->subtyp = DIVA_IPAC_PCI;
		cs->irq = dev_diva201->irq;
		cs->hw.diva.pci_cfg =
			(ulong) ioremap(pci_resource_start(dev_diva201, 0), 4096);
		cs->hw.diva.cfg_reg =
			(ulong) ioremap(pci_resource_start(dev_diva201, 1), 4096);
	} else if ((dev_diva202 = hisax_find_pci_device(PCI_VENDOR_ID_EICON,
							PCI_DEVICE_ID_EICON_DIVA202, dev_diva202))) {
		if (pci_enable_device(dev_diva202))
			return (0);
		cs->subtyp = DIVA_IPACX_PCI;
		cs->irq = dev_diva202->irq;
		cs->hw.diva.pci_cfg =
			(ulong) ioremap(pci_resource_start(dev_diva202, 0), 4096);
		cs->hw.diva.cfg_reg =
			(ulong) ioremap(pci_resource_start(dev_diva202, 1), 4096);
	} else {
		return (-1);	/* card not found; continue search */
	}

	if (!cs->irq) {
		printk(KERN_WARNING "Diva: No IRQ for PCI card found\n");
		iounmap_diva(cs);
		return (0);
	}

	if (!cs->hw.diva.cfg_reg) {
		printk(KERN_WARNING "Diva: No IO-Adr for PCI card found\n");
		iounmap_diva(cs);
		return (0);
	}
	cs->irq_flags |= IRQF_SHARED;

	if ((cs->subtyp == DIVA_IPAC_PCI) ||
	    (cs->subtyp == DIVA_IPACX_PCI)) {
		cs->hw.diva.ctrl = 0;
		cs->hw.diva.isac = 0;
		cs->hw.diva.hscx = 0;
		cs->hw.diva.isac_adr = 0;
		cs->hw.diva.hscx_adr = 0;
		test_and_set_bit(HW_IPAC, &cs->HW_Flags);
	} else {
		cs->hw.diva.ctrl = cs->hw.diva.cfg_reg + DIVA_PCI_CTRL;
		cs->hw.diva.isac = cs->hw.diva.cfg_reg + DIVA_PCI_ISAC_DATA;
		cs->hw.diva.hscx = cs->hw.diva.cfg_reg + DIVA_HSCX_DATA;
		cs->hw.diva.isac_adr = cs->hw.diva.cfg_reg + DIVA_PCI_ISAC_ADR;
		cs->hw.diva.hscx_adr = cs->hw.diva.cfg_reg + DIVA_HSCX_ADR;
	}

	return (1);		/* card found */
}

#else	/* if !CONFIG_PCI */

static int setup_diva_pci(struct IsdnCard *card)
{
	return (-1);	/* card not found; continue search */
}

#endif	/* CONFIG_PCI */

int setup_diva(struct IsdnCard *card)
{
	int rc, have_card = 0;
	struct IsdnCardState *cs = card->cs;
	char tmp[64];

	strcpy(tmp, Diva_revision);
	printk(KERN_INFO "HiSax: Eicon.Diehl Diva driver Rev. %s\n", HiSax_getrev(tmp));
	if (cs->typ != ISDN_CTYPE_DIEHLDIVA)
		return (0);
	cs->hw.diva.status = 0;

	rc = setup_diva_isa(card);
	if (!rc)
		return rc;
	if (rc > 0) {
		have_card = 1;
		goto ready;
	}

	rc = setup_diva_isapnp(card);
	if (!rc)
		return rc;
	if (rc > 0) {
		have_card = 1;
		goto ready;
	}

	rc = setup_diva_pci(card);
	if (!rc)
		return rc;
	if (rc > 0)
		have_card = 1;

ready:
	if (!have_card) {
		printk(KERN_WARNING "Diva: No ISA, ISAPNP or PCI card found\n");
		return (0);
	}

	return setup_diva_common(card->cs);
}