// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #include "main.h" #include <Eigen/Geometry> template<typename Scalar,int Size> void homogeneous(void) { /* this test covers the following files: Homogeneous.h */ typedef Matrix<Scalar,Size,Size> MatrixType; typedef Matrix<Scalar,Size,1, ColMajor> VectorType; typedef Matrix<Scalar,Size+1,Size> HMatrixType; typedef Matrix<Scalar,Size+1,1> HVectorType; typedef Matrix<Scalar,Size,Size+1> T1MatrixType; typedef Matrix<Scalar,Size+1,Size+1> T2MatrixType; typedef Matrix<Scalar,Size+1,Size> T3MatrixType; VectorType v0 = VectorType::Random(), ones = VectorType::Ones(); HVectorType hv0 = HVectorType::Random(); MatrixType m0 = MatrixType::Random(); HMatrixType hm0 = HMatrixType::Random(); hv0 << v0, 1; VERIFY_IS_APPROX(v0.homogeneous(), hv0); VERIFY_IS_APPROX(v0, hv0.hnormalized()); hm0 << m0, ones.transpose(); VERIFY_IS_APPROX(m0.colwise().homogeneous(), hm0); VERIFY_IS_APPROX(m0, hm0.colwise().hnormalized()); hm0.row(Size-1).setRandom(); for(int j=0; j<Size; ++j) m0.col(j) = hm0.col(j).head(Size) / hm0(Size,j); VERIFY_IS_APPROX(m0, hm0.colwise().hnormalized()); T1MatrixType t1 = T1MatrixType::Random(); VERIFY_IS_APPROX(t1 * (v0.homogeneous().eval()), t1 * v0.homogeneous()); VERIFY_IS_APPROX(t1 * (m0.colwise().homogeneous().eval()), t1 * m0.colwise().homogeneous()); T2MatrixType t2 = T2MatrixType::Random(); VERIFY_IS_APPROX(t2 * (v0.homogeneous().eval()), t2 * v0.homogeneous()); VERIFY_IS_APPROX(t2 * (m0.colwise().homogeneous().eval()), t2 * m0.colwise().homogeneous()); VERIFY_IS_APPROX((v0.transpose().rowwise().homogeneous().eval()) * t2, v0.transpose().rowwise().homogeneous() * t2); m0.transpose().rowwise().homogeneous().eval(); VERIFY_IS_APPROX((m0.transpose().rowwise().homogeneous().eval()) * t2, m0.transpose().rowwise().homogeneous() * t2); T3MatrixType t3 = T3MatrixType::Random(); VERIFY_IS_APPROX((v0.transpose().rowwise().homogeneous().eval()) * t3, v0.transpose().rowwise().homogeneous() * t3); VERIFY_IS_APPROX((m0.transpose().rowwise().homogeneous().eval()) * t3, m0.transpose().rowwise().homogeneous() * t3); // test product with a Transform object Transform<Scalar, Size, Affine> aff; Transform<Scalar, Size, AffineCompact> caff; Transform<Scalar, Size, Projective> proj; Matrix<Scalar, Size, Dynamic> pts; Matrix<Scalar, Size+1, Dynamic> pts1, pts2; aff.affine().setRandom(); proj = caff = aff; pts.setRandom(Size,internal::random<int>(1,20)); pts1 = pts.colwise().homogeneous(); VERIFY_IS_APPROX(aff * pts.colwise().homogeneous(), (aff * pts1).colwise().hnormalized()); VERIFY_IS_APPROX(caff * pts.colwise().homogeneous(), (caff * pts1).colwise().hnormalized()); VERIFY_IS_APPROX(proj * pts.colwise().homogeneous(), (proj * pts1)); VERIFY_IS_APPROX((aff * pts1).colwise().hnormalized(), aff * pts); VERIFY_IS_APPROX((caff * pts1).colwise().hnormalized(), caff * pts); pts2 = pts1; pts2.row(Size).setRandom(); VERIFY_IS_APPROX((aff * pts2).colwise().hnormalized(), aff * pts2.colwise().hnormalized()); VERIFY_IS_APPROX((caff * pts2).colwise().hnormalized(), caff * pts2.colwise().hnormalized()); VERIFY_IS_APPROX((proj * pts2).colwise().hnormalized(), (proj * pts2.colwise().hnormalized().colwise().homogeneous()).colwise().hnormalized()); } void test_geo_homogeneous() { for(int i = 0; i < g_repeat; i++) { CALL_SUBTEST_1(( homogeneous<float,1>() )); CALL_SUBTEST_2(( homogeneous<double,3>() )); CALL_SUBTEST_3(( homogeneous<double,8>() )); } }