/* * Copyright (C) 2014 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "patchoat.h" #include <stdio.h> #include <stdlib.h> #include <sys/file.h> #include <sys/stat.h> #include <unistd.h> #include <string> #include <vector> #include "base/scoped_flock.h" #include "base/stringpiece.h" #include "base/stringprintf.h" #include "elf_utils.h" #include "elf_file.h" #include "gc/space/image_space.h" #include "image.h" #include "instruction_set.h" #include "mirror/art_field.h" #include "mirror/art_field-inl.h" #include "mirror/art_method.h" #include "mirror/art_method-inl.h" #include "mirror/object.h" #include "mirror/object-inl.h" #include "mirror/reference.h" #include "noop_compiler_callbacks.h" #include "offsets.h" #include "os.h" #include "runtime.h" #include "scoped_thread_state_change.h" #include "thread.h" #include "utils.h" namespace art { static InstructionSet ElfISAToInstructionSet(Elf32_Word isa) { switch (isa) { case EM_ARM: return kArm; case EM_AARCH64: return kArm64; case EM_386: return kX86; case EM_X86_64: return kX86_64; case EM_MIPS: return kMips; default: return kNone; } } static bool LocationToFilename(const std::string& location, InstructionSet isa, std::string* filename) { bool has_system = false; bool has_cache = false; // image_location = /system/framework/boot.art // system_image_location = /system/framework/<image_isa>/boot.art std::string system_filename(GetSystemImageFilename(location.c_str(), isa)); if (OS::FileExists(system_filename.c_str())) { has_system = true; } bool have_android_data = false; bool dalvik_cache_exists = false; bool is_global_cache = false; std::string dalvik_cache; GetDalvikCache(GetInstructionSetString(isa), false, &dalvik_cache, &have_android_data, &dalvik_cache_exists, &is_global_cache); std::string cache_filename; if (have_android_data && dalvik_cache_exists) { // Always set output location even if it does not exist, // so that the caller knows where to create the image. // // image_location = /system/framework/boot.art // *image_filename = /data/dalvik-cache/<image_isa>/boot.art std::string error_msg; if (GetDalvikCacheFilename(location.c_str(), dalvik_cache.c_str(), &cache_filename, &error_msg)) { has_cache = true; } } if (has_system) { *filename = system_filename; return true; } else if (has_cache) { *filename = cache_filename; return true; } else { return false; } } bool PatchOat::Patch(const std::string& image_location, off_t delta, File* output_image, InstructionSet isa, TimingLogger* timings) { CHECK(Runtime::Current() == nullptr); CHECK(output_image != nullptr); CHECK_GE(output_image->Fd(), 0); CHECK(!image_location.empty()) << "image file must have a filename."; CHECK_NE(isa, kNone); TimingLogger::ScopedTiming t("Runtime Setup", timings); const char *isa_name = GetInstructionSetString(isa); std::string image_filename; if (!LocationToFilename(image_location, isa, &image_filename)) { LOG(ERROR) << "Unable to find image at location " << image_location; return false; } std::unique_ptr<File> input_image(OS::OpenFileForReading(image_filename.c_str())); if (input_image.get() == nullptr) { LOG(ERROR) << "unable to open input image file at " << image_filename << " for location " << image_location; return false; } int64_t image_len = input_image->GetLength(); if (image_len < 0) { LOG(ERROR) << "Error while getting image length"; return false; } ImageHeader image_header; if (sizeof(image_header) != input_image->Read(reinterpret_cast<char*>(&image_header), sizeof(image_header), 0)) { LOG(ERROR) << "Unable to read image header from image file " << input_image->GetPath(); return false; } // Set up the runtime RuntimeOptions options; NoopCompilerCallbacks callbacks; options.push_back(std::make_pair("compilercallbacks", &callbacks)); std::string img = "-Ximage:" + image_location; options.push_back(std::make_pair(img.c_str(), nullptr)); options.push_back(std::make_pair("imageinstructionset", reinterpret_cast<const void*>(isa_name))); if (!Runtime::Create(options, false)) { LOG(ERROR) << "Unable to initialize runtime"; return false; } // Runtime::Create acquired the mutator_lock_ that is normally given away when we Runtime::Start, // give it away now and then switch to a more manageable ScopedObjectAccess. Thread::Current()->TransitionFromRunnableToSuspended(kNative); ScopedObjectAccess soa(Thread::Current()); t.NewTiming("Image and oat Patching setup"); // Create the map where we will write the image patches to. std::string error_msg; std::unique_ptr<MemMap> image(MemMap::MapFile(image_len, PROT_READ | PROT_WRITE, MAP_PRIVATE, input_image->Fd(), 0, input_image->GetPath().c_str(), &error_msg)); if (image.get() == nullptr) { LOG(ERROR) << "unable to map image file " << input_image->GetPath() << " : " << error_msg; return false; } gc::space::ImageSpace* ispc = Runtime::Current()->GetHeap()->GetImageSpace(); PatchOat p(image.release(), ispc->GetLiveBitmap(), ispc->GetMemMap(), delta, timings); t.NewTiming("Patching files"); if (!p.PatchImage()) { LOG(ERROR) << "Failed to patch image file " << input_image->GetPath(); return false; } t.NewTiming("Writing files"); if (!p.WriteImage(output_image)) { return false; } return true; } bool PatchOat::Patch(const File* input_oat, const std::string& image_location, off_t delta, File* output_oat, File* output_image, InstructionSet isa, TimingLogger* timings) { CHECK(Runtime::Current() == nullptr); CHECK(output_image != nullptr); CHECK_GE(output_image->Fd(), 0); CHECK(input_oat != nullptr); CHECK(output_oat != nullptr); CHECK_GE(input_oat->Fd(), 0); CHECK_GE(output_oat->Fd(), 0); CHECK(!image_location.empty()) << "image file must have a filename."; TimingLogger::ScopedTiming t("Runtime Setup", timings); if (isa == kNone) { Elf32_Ehdr elf_hdr; if (sizeof(elf_hdr) != input_oat->Read(reinterpret_cast<char*>(&elf_hdr), sizeof(elf_hdr), 0)) { LOG(ERROR) << "unable to read elf header"; return false; } isa = ElfISAToInstructionSet(elf_hdr.e_machine); } const char* isa_name = GetInstructionSetString(isa); std::string image_filename; if (!LocationToFilename(image_location, isa, &image_filename)) { LOG(ERROR) << "Unable to find image at location " << image_location; return false; } std::unique_ptr<File> input_image(OS::OpenFileForReading(image_filename.c_str())); if (input_image.get() == nullptr) { LOG(ERROR) << "unable to open input image file at " << image_filename << " for location " << image_location; return false; } int64_t image_len = input_image->GetLength(); if (image_len < 0) { LOG(ERROR) << "Error while getting image length"; return false; } ImageHeader image_header; if (sizeof(image_header) != input_image->Read(reinterpret_cast<char*>(&image_header), sizeof(image_header), 0)) { LOG(ERROR) << "Unable to read image header from image file " << input_image->GetPath(); } // Set up the runtime RuntimeOptions options; NoopCompilerCallbacks callbacks; options.push_back(std::make_pair("compilercallbacks", &callbacks)); std::string img = "-Ximage:" + image_location; options.push_back(std::make_pair(img.c_str(), nullptr)); options.push_back(std::make_pair("imageinstructionset", reinterpret_cast<const void*>(isa_name))); if (!Runtime::Create(options, false)) { LOG(ERROR) << "Unable to initialize runtime"; return false; } // Runtime::Create acquired the mutator_lock_ that is normally given away when we Runtime::Start, // give it away now and then switch to a more manageable ScopedObjectAccess. Thread::Current()->TransitionFromRunnableToSuspended(kNative); ScopedObjectAccess soa(Thread::Current()); t.NewTiming("Image and oat Patching setup"); // Create the map where we will write the image patches to. std::string error_msg; std::unique_ptr<MemMap> image(MemMap::MapFile(image_len, PROT_READ | PROT_WRITE, MAP_PRIVATE, input_image->Fd(), 0, input_image->GetPath().c_str(), &error_msg)); if (image.get() == nullptr) { LOG(ERROR) << "unable to map image file " << input_image->GetPath() << " : " << error_msg; return false; } gc::space::ImageSpace* ispc = Runtime::Current()->GetHeap()->GetImageSpace(); std::unique_ptr<ElfFile> elf(ElfFile::Open(const_cast<File*>(input_oat), PROT_READ | PROT_WRITE, MAP_PRIVATE, &error_msg)); if (elf.get() == nullptr) { LOG(ERROR) << "unable to open oat file " << input_oat->GetPath() << " : " << error_msg; return false; } PatchOat p(elf.release(), image.release(), ispc->GetLiveBitmap(), ispc->GetMemMap(), delta, timings); t.NewTiming("Patching files"); if (!p.PatchElf()) { LOG(ERROR) << "Failed to patch oat file " << input_oat->GetPath(); return false; } if (!p.PatchImage()) { LOG(ERROR) << "Failed to patch image file " << input_image->GetPath(); return false; } t.NewTiming("Writing files"); if (!p.WriteElf(output_oat)) { return false; } if (!p.WriteImage(output_image)) { return false; } return true; } bool PatchOat::WriteElf(File* out) { TimingLogger::ScopedTiming t("Writing Elf File", timings_); CHECK(oat_file_.get() != nullptr); CHECK(out != nullptr); size_t expect = oat_file_->Size(); if (out->WriteFully(reinterpret_cast<char*>(oat_file_->Begin()), expect) && out->SetLength(expect) == 0) { return true; } else { LOG(ERROR) << "Writing to oat file " << out->GetPath() << " failed."; return false; } } bool PatchOat::WriteImage(File* out) { TimingLogger::ScopedTiming t("Writing image File", timings_); std::string error_msg; ScopedFlock img_flock; img_flock.Init(out, &error_msg); CHECK(image_ != nullptr); CHECK(out != nullptr); size_t expect = image_->Size(); if (out->WriteFully(reinterpret_cast<char*>(image_->Begin()), expect) && out->SetLength(expect) == 0) { return true; } else { LOG(ERROR) << "Writing to image file " << out->GetPath() << " failed."; return false; } } bool PatchOat::PatchImage() { ImageHeader* image_header = reinterpret_cast<ImageHeader*>(image_->Begin()); CHECK_GT(image_->Size(), sizeof(ImageHeader)); // These are the roots from the original file. mirror::Object* img_roots = image_header->GetImageRoots(); image_header->RelocateImage(delta_); VisitObject(img_roots); if (!image_header->IsValid()) { LOG(ERROR) << "reloction renders image header invalid"; return false; } { TimingLogger::ScopedTiming t("Walk Bitmap", timings_); // Walk the bitmap. WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_); bitmap_->Walk(PatchOat::BitmapCallback, this); } return true; } bool PatchOat::InHeap(mirror::Object* o) { uintptr_t begin = reinterpret_cast<uintptr_t>(heap_->Begin()); uintptr_t end = reinterpret_cast<uintptr_t>(heap_->End()); uintptr_t obj = reinterpret_cast<uintptr_t>(o); return o == nullptr || (begin <= obj && obj < end); } void PatchOat::PatchVisitor::operator() (mirror::Object* obj, MemberOffset off, bool is_static_unused) const { mirror::Object* referent = obj->GetFieldObject<mirror::Object, kVerifyNone>(off); DCHECK(patcher_->InHeap(referent)) << "Referent is not in the heap."; mirror::Object* moved_object = patcher_->RelocatedAddressOf(referent); copy_->SetFieldObjectWithoutWriteBarrier<false, true, kVerifyNone>(off, moved_object); } void PatchOat::PatchVisitor::operator() (mirror::Class* cls, mirror::Reference* ref) const { MemberOffset off = mirror::Reference::ReferentOffset(); mirror::Object* referent = ref->GetReferent(); DCHECK(patcher_->InHeap(referent)) << "Referent is not in the heap."; mirror::Object* moved_object = patcher_->RelocatedAddressOf(referent); copy_->SetFieldObjectWithoutWriteBarrier<false, true, kVerifyNone>(off, moved_object); } mirror::Object* PatchOat::RelocatedCopyOf(mirror::Object* obj) { if (obj == nullptr) { return nullptr; } DCHECK_GT(reinterpret_cast<uintptr_t>(obj), reinterpret_cast<uintptr_t>(heap_->Begin())); DCHECK_LT(reinterpret_cast<uintptr_t>(obj), reinterpret_cast<uintptr_t>(heap_->End())); uintptr_t heap_off = reinterpret_cast<uintptr_t>(obj) - reinterpret_cast<uintptr_t>(heap_->Begin()); DCHECK_LT(heap_off, image_->Size()); return reinterpret_cast<mirror::Object*>(image_->Begin() + heap_off); } mirror::Object* PatchOat::RelocatedAddressOf(mirror::Object* obj) { if (obj == nullptr) { return nullptr; } else { return reinterpret_cast<mirror::Object*>(reinterpret_cast<byte*>(obj) + delta_); } } // Called by BitmapCallback void PatchOat::VisitObject(mirror::Object* object) { mirror::Object* copy = RelocatedCopyOf(object); CHECK(copy != nullptr); if (kUseBakerOrBrooksReadBarrier) { object->AssertReadBarrierPointer(); if (kUseBrooksReadBarrier) { mirror::Object* moved_to = RelocatedAddressOf(object); copy->SetReadBarrierPointer(moved_to); DCHECK_EQ(copy->GetReadBarrierPointer(), moved_to); } } PatchOat::PatchVisitor visitor(this, copy); object->VisitReferences<true, kVerifyNone>(visitor, visitor); if (object->IsArtMethod<kVerifyNone>()) { FixupMethod(static_cast<mirror::ArtMethod*>(object), static_cast<mirror::ArtMethod*>(copy)); } } void PatchOat::FixupMethod(mirror::ArtMethod* object, mirror::ArtMethod* copy) { // Just update the entry points if it looks like we should. // TODO: sanity check all the pointers' values #if defined(ART_USE_PORTABLE_COMPILER) uintptr_t portable = reinterpret_cast<uintptr_t>( object->GetEntryPointFromPortableCompiledCode<kVerifyNone>()); if (portable != 0) { copy->SetEntryPointFromPortableCompiledCode(reinterpret_cast<void*>(portable + delta_)); } #endif uintptr_t quick= reinterpret_cast<uintptr_t>( object->GetEntryPointFromQuickCompiledCode<kVerifyNone>()); if (quick != 0) { copy->SetEntryPointFromQuickCompiledCode(reinterpret_cast<void*>(quick + delta_)); } uintptr_t interpreter = reinterpret_cast<uintptr_t>( object->GetEntryPointFromInterpreter<kVerifyNone>()); if (interpreter != 0) { copy->SetEntryPointFromInterpreter( reinterpret_cast<mirror::EntryPointFromInterpreter*>(interpreter + delta_)); } uintptr_t native_method = reinterpret_cast<uintptr_t>(object->GetNativeMethod()); if (native_method != 0) { copy->SetNativeMethod(reinterpret_cast<void*>(native_method + delta_)); } uintptr_t native_gc_map = reinterpret_cast<uintptr_t>(object->GetNativeGcMap()); if (native_gc_map != 0) { copy->SetNativeGcMap(reinterpret_cast<uint8_t*>(native_gc_map + delta_)); } } bool PatchOat::Patch(File* input_oat, off_t delta, File* output_oat, TimingLogger* timings) { CHECK(input_oat != nullptr); CHECK(output_oat != nullptr); CHECK_GE(input_oat->Fd(), 0); CHECK_GE(output_oat->Fd(), 0); TimingLogger::ScopedTiming t("Setup Oat File Patching", timings); std::string error_msg; std::unique_ptr<ElfFile> elf(ElfFile::Open(const_cast<File*>(input_oat), PROT_READ | PROT_WRITE, MAP_PRIVATE, &error_msg)); if (elf.get() == nullptr) { LOG(ERROR) << "unable to open oat file " << input_oat->GetPath() << " : " << error_msg; return false; } PatchOat p(elf.release(), delta, timings); t.NewTiming("Patch Oat file"); if (!p.PatchElf()) { return false; } t.NewTiming("Writing oat file"); if (!p.WriteElf(output_oat)) { return false; } return true; } bool PatchOat::CheckOatFile() { Elf32_Shdr* patches_sec = oat_file_->FindSectionByName(".oat_patches"); if (patches_sec == nullptr) { return false; } if (patches_sec->sh_type != SHT_OAT_PATCH) { return false; } uintptr_t* patches = reinterpret_cast<uintptr_t*>(oat_file_->Begin() + patches_sec->sh_offset); uintptr_t* patches_end = patches + (patches_sec->sh_size/sizeof(uintptr_t)); Elf32_Shdr* oat_data_sec = oat_file_->FindSectionByName(".rodata"); Elf32_Shdr* oat_text_sec = oat_file_->FindSectionByName(".text"); if (oat_data_sec == nullptr) { return false; } if (oat_text_sec == nullptr) { return false; } if (oat_text_sec->sh_offset <= oat_data_sec->sh_offset) { return false; } for (; patches < patches_end; patches++) { if (oat_text_sec->sh_size <= *patches) { return false; } } return true; } bool PatchOat::PatchOatHeader() { Elf32_Shdr *rodata_sec = oat_file_->FindSectionByName(".rodata"); if (rodata_sec == nullptr) { return false; } OatHeader* oat_header = reinterpret_cast<OatHeader*>(oat_file_->Begin() + rodata_sec->sh_offset); if (!oat_header->IsValid()) { LOG(ERROR) << "Elf file " << oat_file_->GetFile().GetPath() << " has an invalid oat header"; return false; } oat_header->RelocateOat(delta_); return true; } bool PatchOat::PatchElf() { TimingLogger::ScopedTiming t("Fixup Elf Text Section", timings_); if (!PatchTextSection()) { return false; } if (!PatchOatHeader()) { return false; } bool need_fixup = false; t.NewTiming("Fixup Elf Headers"); // Fixup Phdr's for (unsigned int i = 0; i < oat_file_->GetProgramHeaderNum(); i++) { Elf32_Phdr* hdr = oat_file_->GetProgramHeader(i); CHECK(hdr != nullptr); if (hdr->p_vaddr != 0 && hdr->p_vaddr != hdr->p_offset) { need_fixup = true; hdr->p_vaddr += delta_; } if (hdr->p_paddr != 0 && hdr->p_paddr != hdr->p_offset) { need_fixup = true; hdr->p_paddr += delta_; } } if (!need_fixup) { // This was never passed through ElfFixup so all headers/symbols just have their offset as // their addr. Therefore we do not need to update these parts. return true; } t.NewTiming("Fixup Section Headers"); for (unsigned int i = 0; i < oat_file_->GetSectionHeaderNum(); i++) { Elf32_Shdr* hdr = oat_file_->GetSectionHeader(i); CHECK(hdr != nullptr); if (hdr->sh_addr != 0) { hdr->sh_addr += delta_; } } t.NewTiming("Fixup Dynamics"); for (Elf32_Word i = 0; i < oat_file_->GetDynamicNum(); i++) { Elf32_Dyn& dyn = oat_file_->GetDynamic(i); if (IsDynamicSectionPointer(dyn.d_tag, oat_file_->GetHeader().e_machine)) { dyn.d_un.d_ptr += delta_; } } t.NewTiming("Fixup Elf Symbols"); // Fixup dynsym Elf32_Shdr* dynsym_sec = oat_file_->FindSectionByName(".dynsym"); CHECK(dynsym_sec != nullptr); if (!PatchSymbols(dynsym_sec)) { return false; } // Fixup symtab Elf32_Shdr* symtab_sec = oat_file_->FindSectionByName(".symtab"); if (symtab_sec != nullptr) { if (!PatchSymbols(symtab_sec)) { return false; } } return true; } bool PatchOat::PatchSymbols(Elf32_Shdr* section) { Elf32_Sym* syms = reinterpret_cast<Elf32_Sym*>(oat_file_->Begin() + section->sh_offset); const Elf32_Sym* last_sym = reinterpret_cast<Elf32_Sym*>(oat_file_->Begin() + section->sh_offset + section->sh_size); CHECK_EQ(section->sh_size % sizeof(Elf32_Sym), 0u) << "Symtab section size is not multiple of symbol size"; for (; syms < last_sym; syms++) { uint8_t sttype = ELF32_ST_TYPE(syms->st_info); Elf32_Word shndx = syms->st_shndx; if (shndx != SHN_ABS && shndx != SHN_COMMON && shndx != SHN_UNDEF && (sttype == STT_FUNC || sttype == STT_OBJECT)) { CHECK_NE(syms->st_value, 0u); syms->st_value += delta_; } } return true; } bool PatchOat::PatchTextSection() { Elf32_Shdr* patches_sec = oat_file_->FindSectionByName(".oat_patches"); if (patches_sec == nullptr) { LOG(ERROR) << ".oat_patches section not found. Aborting patch"; return false; } DCHECK(CheckOatFile()) << "Oat file invalid"; CHECK_EQ(patches_sec->sh_type, SHT_OAT_PATCH) << "Unexpected type of .oat_patches"; uintptr_t* patches = reinterpret_cast<uintptr_t*>(oat_file_->Begin() + patches_sec->sh_offset); uintptr_t* patches_end = patches + (patches_sec->sh_size/sizeof(uintptr_t)); Elf32_Shdr* oat_text_sec = oat_file_->FindSectionByName(".text"); CHECK(oat_text_sec != nullptr); byte* to_patch = oat_file_->Begin() + oat_text_sec->sh_offset; uintptr_t to_patch_end = reinterpret_cast<uintptr_t>(to_patch) + oat_text_sec->sh_size; for (; patches < patches_end; patches++) { CHECK_LT(*patches, oat_text_sec->sh_size) << "Bad Patch"; uint32_t* patch_loc = reinterpret_cast<uint32_t*>(to_patch + *patches); CHECK_LT(reinterpret_cast<uintptr_t>(patch_loc), to_patch_end); *patch_loc += delta_; } return true; } static int orig_argc; static char** orig_argv; static std::string CommandLine() { std::vector<std::string> command; for (int i = 0; i < orig_argc; ++i) { command.push_back(orig_argv[i]); } return Join(command, ' '); } static void UsageErrorV(const char* fmt, va_list ap) { std::string error; StringAppendV(&error, fmt, ap); LOG(ERROR) << error; } static void UsageError(const char* fmt, ...) { va_list ap; va_start(ap, fmt); UsageErrorV(fmt, ap); va_end(ap); } static void Usage(const char *fmt, ...) { va_list ap; va_start(ap, fmt); UsageErrorV(fmt, ap); va_end(ap); UsageError("Command: %s", CommandLine().c_str()); UsageError("Usage: patchoat [options]..."); UsageError(""); UsageError(" --instruction-set=<isa>: Specifies the instruction set the patched code is"); UsageError(" compiled for. Required if you use --input-oat-location"); UsageError(""); UsageError(" --input-oat-file=<file.oat>: Specifies the exact filename of the oat file to be"); UsageError(" patched."); UsageError(""); UsageError(" --input-oat-fd=<file-descriptor>: Specifies the file-descriptor of the oat file"); UsageError(" to be patched."); UsageError(""); UsageError(" --input-oat-location=<file.oat>: Specifies the 'location' to read the patched"); UsageError(" oat file from. If used one must also supply the --instruction-set"); UsageError(""); UsageError(" --input-image-location=<file.art>: Specifies the 'location' of the image file to"); UsageError(" be patched. If --instruction-set is not given it will use the instruction set"); UsageError(" extracted from the --input-oat-file."); UsageError(""); UsageError(" --output-oat-file=<file.oat>: Specifies the exact file to write the patched oat"); UsageError(" file to."); UsageError(""); UsageError(" --output-oat-fd=<file-descriptor>: Specifies the file-descriptor to write the"); UsageError(" the patched oat file to."); UsageError(""); UsageError(" --output-image-file=<file.art>: Specifies the exact file to write the patched"); UsageError(" image file to."); UsageError(""); UsageError(" --output-image-fd=<file-descriptor>: Specifies the file-descriptor to write the"); UsageError(" the patched image file to."); UsageError(""); UsageError(" --orig-base-offset=<original-base-offset>: Specify the base offset the input file"); UsageError(" was compiled with. This is needed if one is specifying a --base-offset"); UsageError(""); UsageError(" --base-offset=<new-base-offset>: Specify the base offset we will repatch the"); UsageError(" given files to use. This requires that --orig-base-offset is also given."); UsageError(""); UsageError(" --base-offset-delta=<delta>: Specify the amount to change the old base-offset by."); UsageError(" This value may be negative."); UsageError(""); UsageError(" --patched-image-file=<file.art>: Use the same patch delta as was used to patch"); UsageError(" the given image file."); UsageError(""); UsageError(" --patched-image-location=<file.art>: Use the same patch delta as was used to"); UsageError(" patch the given image location. If used one must also specify the"); UsageError(" --instruction-set flag. It will search for this image in the same way that"); UsageError(" is done when loading one."); UsageError(""); UsageError(" --lock-output: Obtain a flock on output oat file before starting."); UsageError(""); UsageError(" --no-lock-output: Do not attempt to obtain a flock on output oat file."); UsageError(""); UsageError(" --dump-timings: dump out patch timing information"); UsageError(""); UsageError(" --no-dump-timings: do not dump out patch timing information"); UsageError(""); exit(EXIT_FAILURE); } static bool ReadBaseDelta(const char* name, off_t* delta, std::string* error_msg) { CHECK(name != nullptr); CHECK(delta != nullptr); std::unique_ptr<File> file; if (OS::FileExists(name)) { file.reset(OS::OpenFileForReading(name)); if (file.get() == nullptr) { *error_msg = "Failed to open file %s for reading"; return false; } } else { *error_msg = "File %s does not exist"; return false; } CHECK(file.get() != nullptr); ImageHeader hdr; if (sizeof(hdr) != file->Read(reinterpret_cast<char*>(&hdr), sizeof(hdr), 0)) { *error_msg = "Failed to read file %s"; return false; } if (!hdr.IsValid()) { *error_msg = "%s does not contain a valid image header."; return false; } *delta = hdr.GetPatchDelta(); return true; } static File* CreateOrOpen(const char* name, bool* created) { if (OS::FileExists(name)) { *created = false; return OS::OpenFileReadWrite(name); } else { *created = true; std::unique_ptr<File> f(OS::CreateEmptyFile(name)); if (f.get() != nullptr) { if (fchmod(f->Fd(), 0644) != 0) { PLOG(ERROR) << "Unable to make " << name << " world readable"; unlink(name); return nullptr; } } return f.release(); } } static int patchoat(int argc, char **argv) { InitLogging(argv); MemMap::Init(); const bool debug = kIsDebugBuild; orig_argc = argc; orig_argv = argv; TimingLogger timings("patcher", false, false); InitLogging(argv); // Skip over the command name. argv++; argc--; if (argc == 0) { Usage("No arguments specified"); } timings.StartTiming("Patchoat"); // cmd line args bool isa_set = false; InstructionSet isa = kNone; std::string input_oat_filename; std::string input_oat_location; int input_oat_fd = -1; bool have_input_oat = false; std::string input_image_location; std::string output_oat_filename; int output_oat_fd = -1; bool have_output_oat = false; std::string output_image_filename; int output_image_fd = -1; bool have_output_image = false; uintptr_t base_offset = 0; bool base_offset_set = false; uintptr_t orig_base_offset = 0; bool orig_base_offset_set = false; off_t base_delta = 0; bool base_delta_set = false; std::string patched_image_filename; std::string patched_image_location; bool dump_timings = kIsDebugBuild; bool lock_output = true; for (int i = 0; i < argc; i++) { const StringPiece option(argv[i]); const bool log_options = false; if (log_options) { LOG(INFO) << "patchoat: option[" << i << "]=" << argv[i]; } if (option.starts_with("--instruction-set=")) { isa_set = true; const char* isa_str = option.substr(strlen("--instruction-set=")).data(); isa = GetInstructionSetFromString(isa_str); if (isa == kNone) { Usage("Unknown or invalid instruction set %s", isa_str); } } else if (option.starts_with("--input-oat-location=")) { if (have_input_oat) { Usage("Only one of --input-oat-file, --input-oat-location and --input-oat-fd may be used."); } have_input_oat = true; input_oat_location = option.substr(strlen("--input-oat-location=")).data(); } else if (option.starts_with("--input-oat-file=")) { if (have_input_oat) { Usage("Only one of --input-oat-file, --input-oat-location and --input-oat-fd may be used."); } have_input_oat = true; input_oat_filename = option.substr(strlen("--input-oat-file=")).data(); } else if (option.starts_with("--input-oat-fd=")) { if (have_input_oat) { Usage("Only one of --input-oat-file, --input-oat-location and --input-oat-fd may be used."); } have_input_oat = true; const char* oat_fd_str = option.substr(strlen("--input-oat-fd=")).data(); if (!ParseInt(oat_fd_str, &input_oat_fd)) { Usage("Failed to parse --input-oat-fd argument '%s' as an integer", oat_fd_str); } if (input_oat_fd < 0) { Usage("--input-oat-fd pass a negative value %d", input_oat_fd); } } else if (option.starts_with("--input-image-location=")) { input_image_location = option.substr(strlen("--input-image-location=")).data(); } else if (option.starts_with("--output-oat-file=")) { if (have_output_oat) { Usage("Only one of --output-oat-file, and --output-oat-fd may be used."); } have_output_oat = true; output_oat_filename = option.substr(strlen("--output-oat-file=")).data(); } else if (option.starts_with("--output-oat-fd=")) { if (have_output_oat) { Usage("Only one of --output-oat-file, --output-oat-fd may be used."); } have_output_oat = true; const char* oat_fd_str = option.substr(strlen("--output-oat-fd=")).data(); if (!ParseInt(oat_fd_str, &output_oat_fd)) { Usage("Failed to parse --output-oat-fd argument '%s' as an integer", oat_fd_str); } if (output_oat_fd < 0) { Usage("--output-oat-fd pass a negative value %d", output_oat_fd); } } else if (option.starts_with("--output-image-file=")) { if (have_output_image) { Usage("Only one of --output-image-file, and --output-image-fd may be used."); } have_output_image = true; output_image_filename = option.substr(strlen("--output-image-file=")).data(); } else if (option.starts_with("--output-image-fd=")) { if (have_output_image) { Usage("Only one of --output-image-file, and --output-image-fd may be used."); } have_output_image = true; const char* image_fd_str = option.substr(strlen("--output-image-fd=")).data(); if (!ParseInt(image_fd_str, &output_image_fd)) { Usage("Failed to parse --output-image-fd argument '%s' as an integer", image_fd_str); } if (output_image_fd < 0) { Usage("--output-image-fd pass a negative value %d", output_image_fd); } } else if (option.starts_with("--orig-base-offset=")) { const char* orig_base_offset_str = option.substr(strlen("--orig-base-offset=")).data(); orig_base_offset_set = true; if (!ParseUint(orig_base_offset_str, &orig_base_offset)) { Usage("Failed to parse --orig-base-offset argument '%s' as an uintptr_t", orig_base_offset_str); } } else if (option.starts_with("--base-offset=")) { const char* base_offset_str = option.substr(strlen("--base-offset=")).data(); base_offset_set = true; if (!ParseUint(base_offset_str, &base_offset)) { Usage("Failed to parse --base-offset argument '%s' as an uintptr_t", base_offset_str); } } else if (option.starts_with("--base-offset-delta=")) { const char* base_delta_str = option.substr(strlen("--base-offset-delta=")).data(); base_delta_set = true; if (!ParseInt(base_delta_str, &base_delta)) { Usage("Failed to parse --base-offset-delta argument '%s' as an off_t", base_delta_str); } } else if (option.starts_with("--patched-image-location=")) { patched_image_location = option.substr(strlen("--patched-image-location=")).data(); } else if (option.starts_with("--patched-image-file=")) { patched_image_filename = option.substr(strlen("--patched-image-file=")).data(); } else if (option == "--lock-output") { lock_output = true; } else if (option == "--no-lock-output") { lock_output = false; } else if (option == "--dump-timings") { dump_timings = true; } else if (option == "--no-dump-timings") { dump_timings = false; } else { Usage("Unknown argument %s", option.data()); } } { // Only 1 of these may be set. uint32_t cnt = 0; cnt += (base_delta_set) ? 1 : 0; cnt += (base_offset_set && orig_base_offset_set) ? 1 : 0; cnt += (!patched_image_filename.empty()) ? 1 : 0; cnt += (!patched_image_location.empty()) ? 1 : 0; if (cnt > 1) { Usage("Only one of --base-offset/--orig-base-offset, --base-offset-delta, " "--patched-image-filename or --patched-image-location may be used."); } else if (cnt == 0) { Usage("Must specify --base-offset-delta, --base-offset and --orig-base-offset, " "--patched-image-location or --patched-image-file"); } } if (have_input_oat != have_output_oat) { Usage("Either both input and output oat must be supplied or niether must be."); } if ((!input_image_location.empty()) != have_output_image) { Usage("Either both input and output image must be supplied or niether must be."); } // We know we have both the input and output so rename for clarity. bool have_image_files = have_output_image; bool have_oat_files = have_output_oat; if (!have_oat_files && !have_image_files) { Usage("Must be patching either an oat or an image file or both."); } if (!have_oat_files && !isa_set) { Usage("Must include ISA if patching an image file without an oat file."); } if (!input_oat_location.empty()) { if (!isa_set) { Usage("specifying a location requires specifying an instruction set"); } if (!LocationToFilename(input_oat_location, isa, &input_oat_filename)) { Usage("Unable to find filename for input oat location %s", input_oat_location.c_str()); } if (debug) { LOG(INFO) << "Using input-oat-file " << input_oat_filename; } } if (!patched_image_location.empty()) { if (!isa_set) { Usage("specifying a location requires specifying an instruction set"); } std::string system_filename; bool has_system = false; std::string cache_filename; bool has_cache = false; bool has_android_data_unused = false; bool is_global_cache = false; if (!gc::space::ImageSpace::FindImageFilename(patched_image_location.c_str(), isa, &system_filename, &has_system, &cache_filename, &has_android_data_unused, &has_cache, &is_global_cache)) { Usage("Unable to determine image file for location %s", patched_image_location.c_str()); } if (has_cache) { patched_image_filename = cache_filename; } else if (has_system) { LOG(WARNING) << "Only image file found was in /system for image location " << patched_image_location; patched_image_filename = system_filename; } else { Usage("Unable to determine image file for location %s", patched_image_location.c_str()); } if (debug) { LOG(INFO) << "Using patched-image-file " << patched_image_filename; } } if (!base_delta_set) { if (orig_base_offset_set && base_offset_set) { base_delta_set = true; base_delta = base_offset - orig_base_offset; } else if (!patched_image_filename.empty()) { base_delta_set = true; std::string error_msg; if (!ReadBaseDelta(patched_image_filename.c_str(), &base_delta, &error_msg)) { Usage(error_msg.c_str(), patched_image_filename.c_str()); } } else { if (base_offset_set) { Usage("Unable to determine original base offset."); } else { Usage("Must supply a desired new offset or delta."); } } } if (!IsAligned<kPageSize>(base_delta)) { Usage("Base offset/delta must be alligned to a pagesize (0x%08x) boundary.", kPageSize); } // Do we need to cleanup output files if we fail? bool new_image_out = false; bool new_oat_out = false; std::unique_ptr<File> input_oat; std::unique_ptr<File> output_oat; std::unique_ptr<File> output_image; if (have_image_files) { CHECK(!input_image_location.empty()); if (output_image_fd != -1) { if (output_image_filename.empty()) { output_image_filename = "output-image-file"; } output_image.reset(new File(output_image_fd, output_image_filename)); } else { CHECK(!output_image_filename.empty()); output_image.reset(CreateOrOpen(output_image_filename.c_str(), &new_image_out)); } } else { CHECK(output_image_filename.empty() && output_image_fd == -1 && input_image_location.empty()); } if (have_oat_files) { if (input_oat_fd != -1) { if (input_oat_filename.empty()) { input_oat_filename = "input-oat-file"; } input_oat.reset(new File(input_oat_fd, input_oat_filename)); } else { CHECK(!input_oat_filename.empty()); input_oat.reset(OS::OpenFileForReading(input_oat_filename.c_str())); if (input_oat.get() == nullptr) { LOG(ERROR) << "Could not open input oat file: " << strerror(errno); } } if (output_oat_fd != -1) { if (output_oat_filename.empty()) { output_oat_filename = "output-oat-file"; } output_oat.reset(new File(output_oat_fd, output_oat_filename)); } else { CHECK(!output_oat_filename.empty()); output_oat.reset(CreateOrOpen(output_oat_filename.c_str(), &new_oat_out)); } } auto cleanup = [&output_image_filename, &output_oat_filename, &new_oat_out, &new_image_out, &timings, &dump_timings](bool success) { timings.EndTiming(); if (!success) { if (new_oat_out) { CHECK(!output_oat_filename.empty()); unlink(output_oat_filename.c_str()); } if (new_image_out) { CHECK(!output_image_filename.empty()); unlink(output_image_filename.c_str()); } } if (dump_timings) { LOG(INFO) << Dumpable<TimingLogger>(timings); } }; if ((have_oat_files && (input_oat.get() == nullptr || output_oat.get() == nullptr)) || (have_image_files && output_image.get() == nullptr)) { cleanup(false); return EXIT_FAILURE; } ScopedFlock output_oat_lock; if (lock_output) { std::string error_msg; if (have_oat_files && !output_oat_lock.Init(output_oat.get(), &error_msg)) { LOG(ERROR) << "Unable to lock output oat " << output_image->GetPath() << ": " << error_msg; cleanup(false); return EXIT_FAILURE; } } if (debug) { LOG(INFO) << "moving offset by " << base_delta << " (0x" << std::hex << base_delta << ") bytes or " << std::dec << (base_delta/kPageSize) << " pages."; } bool ret; if (have_image_files && have_oat_files) { TimingLogger::ScopedTiming pt("patch image and oat", &timings); ret = PatchOat::Patch(input_oat.get(), input_image_location, base_delta, output_oat.get(), output_image.get(), isa, &timings); } else if (have_oat_files) { TimingLogger::ScopedTiming pt("patch oat", &timings); ret = PatchOat::Patch(input_oat.get(), base_delta, output_oat.get(), &timings); } else { TimingLogger::ScopedTiming pt("patch image", &timings); CHECK(have_image_files); ret = PatchOat::Patch(input_image_location, base_delta, output_image.get(), isa, &timings); } cleanup(ret); return (ret) ? EXIT_SUCCESS : EXIT_FAILURE; } } // namespace art int main(int argc, char **argv) { return art::patchoat(argc, argv); }